An Interplay of Ridgelet and Linear Canonical Transforms
نویسندگان
چکیده
The present study is the first of its kind, aiming to explore interface between ridgelet and linear canonical transforms. To begin with, we formulate a family waveforms by suitably chirping one-dimensional wavelet along specific direction. construction novel demonstrated via suitable example supported vivid graphics. Subsequently, introduce notion transform, which not only embodies classical transform but also yields another new variant based on fractional Fourier transform. Besides studying all fundamental properties, an illustrative implementation bivariate function.
منابع مشابه
Fast linear canonical transforms.
The linear canonical transform provides a mathematical model of paraxial propagation though quadratic phase systems. We review the literature on numerical approximation of this transform, including discretization, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear canonical transform algorithm comparable to the Sande-Tukey fast Fourier tran...
متن کاملMultiscaled Wavelet Transforms, Ridgelet Transforms, and Radon Transforms on the Space of Matrices
Let Mn,m be the space of real n × m matrices which can be identified with the Euclidean space R. We introduce continuous wavelet transforms on Mn,m with a multivalued scaling parameter represented by a positive definite symmetric matrix. These transforms agree with the polar decomposition on Mn,m and coincide with classical ones in the rank-one case m = 1. We prove an analog of Calderón’s repro...
متن کاملOptical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters.
We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We not only allow the fractional Fourier transform orders to be specified independently for the two dimensions but also allow the input and output scale parameters and the residual spherical phase factors to be controlled. We further discuss systems that do not allow all these parameters to be con...
متن کاملRadon and Ridgelet transforms applied to motion compensated images
Images are typically described via orthogonal, non-redundant transforms like wavelet or discrete cosine transform. The good performances of wavelets in one-dimensional domain are lost when they are applied to images using 2D separable basis since they are not able to efficiently code one-dimensional singularities. The Ridgelet transform achieves very compact representation of linear singulariti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10121986